
Appendix B

Review of Some Calculus
Fundamentals

In Dynamics, objects are moving. This means that positions and velocities are changing with respect
to time. The rates at which these things change depend on forces acting on a body. Therefore,
to describe what is happening mathematically, we need calculus. In fact, calculus was invented by
Newton in order to handle dynamics problems.

Here, it is not enought to know how to calculate an integral or derivative. It is really important
that you have a fundamental understanding of what these concepts mean.

B.1 Derivatives (Video)

Suppose we have a function that I’ll call x(t). If we think of the independent variable t as time,
then x(t) tells us how x varies with time. An example is shown in Figure B.1.
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Figure B.1: Plot of a function x(t) to illustrate what a derivative means.

By definition, the derivative of x with respect to t, at time t = t0 is

dx

dt

∣∣∣∣
t0

= lim
t1→t0

x(t1)− x(t0)

t1 − t0
. (B.1)

Now, Equation (B.1) is a collection of symbols. Rather than trying to memorize the symbols and
the order in which they appear, it is important to understand what it means.
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B.1.1 Derivative is a Slope

Notice that both the numerator and denominator are differences (subtraction). The numerator
is a measure of how much x has changed between times t0 and t1. The change is labeled Δx in
Figure B.1. The denominator is the change in time, labeled Δt. In Figure B.1, we see that the
quotient Δx/Δt is the slope of the line passing through the points x(t0) and x(t1).

If we choose a different point t1 (call it t1b), then we get a different line passing through points
x(t0) and x(t1b), with a different slope. For comparison, the original slope and new slope are
illustrated in Figure B.2. In the limit as t1 approaches t0, these slopes approach a limit: the slope
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Figure B.2: Illustration of how the slope changes as t1 → t0.

of the line tangent to x(t), at the point t = t0. According to the definition (B.1), this limiting slope
is the derivative of x with respect to t, at the point t = t0.

B.1.2 Derivative is a Rate of Change

As discussed in the previous section, the quotient Δx/Δt can be interpreted, graphically, as a slope.
We can also think of it as the amount x changes (Δx) for a given change in time: Δt.

As an example to think about, suppose that x(t) is the reading on your car’s odometer as you’re
driving across the country. Suppose that t0 coincides with 9:00am on Wednesday morning, and t1
coincides with the same time the next day. Furthermore, suppose that during this 24-hour period,
your car travels 600 miles. Then,

Δx

Δt
=

x(t1)− x(t0)

t1 − t0
=

600mi

day
=

600mi

day
· day

24 hour
= 25mph.

Thus we can see that Δx/Δt is a rate of travel; your odometer is changing at a rate of 600 miles
per day. Sounds like a good pace doesn’t it?

However, when we convert 600 miles per day to miles per hour, we get 25 mph. Hmmm. It
doesn’t seem so fast now. The reason it doesn’t seem so fast is because your 600 miles per day
calculation includes the time you were stopped to get fuel, stopped to get food, stopped to sleep,
and stopped to look over the rim of the Grand Canyon.

Now, suppose we define t1b to coincide with 10:00am on Wednesday (one hour after t0), a time
during which you were on the interstate highway. Then, Δxb/Δtb would probably provide a better
estimate of your rate of travel (speed) during this time. However, this new estimate would still
include the time you got stuck behind a slow moving truck and were not able to pass.

If you define t1c so that Δtc = t1c−t0 is 1 second, then Δxc/Δtc is probably a real good estimate
of your car’s speed at 9:00am. Of course, you would need a really precise odometer to make this
measurement.
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This process of taking smaller and smaller time intervals is precisely the effect of the limit
limt1→t0 in the definition of derivative (B.1). The derivative is an instantaneous rate of change.

B.1.3 Shorthand Notation for Time Derivative

In dynamics we will be writing a lot of derivatives. Instead of writing them the long way as in the
left side of Equation (B.1), we will often use a simpler notation:

ẋ(t0).

The over-dot simply means derivative with respect to time. A second derivative with respect to
time is indicated by two dots: ẍ(t0). Third derivative:

...
x(t0).

Now the simple dot notation only represents differentiation with respect to time. The dot is
NOT used to represent differentiation with respect to any other variable.

B.1.4 Check Your Understanding (Video)

In the top part of Figure B.3, I show a plot of a function x(t). If you understand what the time
derivative means, you should be able to sketch (by hand) the time derivative ẋ(t). Try it before
turning the page (where the answer is given). In both plots, make the time axis have the same scale
so that you can line up features of the plots. I have drawn light gray vertical lines to help you align
things.
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Figure B.3: Test your understanding of the time derivative.
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Here’s the answer. Examine it very carefully, and read the itemized comments below.

t

x

x

t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Figure B.4: The answer.

• Interval t3 < t < t4: Within this interval, notice that x(t) is constant; its value is not
changing. The quantity Δx from Figure B.1 must be zero. Therefore the derivative ẋ(t) must
be zero between t3 and t4.

If you want to think about it graphically, notice that x(t) has zero slope between t3 and t4.
Since the value of ẋ(t) is the slope of x(t), we know that ẋ(t) must be zero between t3 and t4.

• Interval 0 < t < t2: Within this interval, notice that x(t) is strictly1 increasing. The slope
of x(t) is positive. Therefore ẋ must be positive.

Furthermore, observe that the slope of x(t) is constant between 0 and t2. Therefore, in
addition to being positive, ẋ(t) must be constant in the interval.

Note: It is common for students to get distracted by the fact that x(t) is negative between 0
and t1, and then positive between t1 and t2. This fact doesn’t matter. What does matter is
the fact that x(t) is increasing, and that it’s increasing at a constant rate.

• Interval t9 < t < t11: Likewise, x(t) is increasing at a constant rate (constant slope) between
t9 and t11. Therefore, ẋ(t) must be a positive constant in this interval.

But notice that the slope between t9 and t11 is not as large as it is between 0 and t2. Therefore
ẋ(t) is not as large between t9 and t11 as it is between 0 and t2.

Again, the fact that x(t) passes through zero doesn’t matter.

• Interval t > t11: Again, x(t) is increasing at a constant rate. The rate (slope) is greater than
it is between t9 and t11 and greater than it is between 0 and t2. Therefore ẋ(t) is constant,
positive, and larger than it is anywhere else on the graph.

1When I say “strictly” increasing, I mean that it only increases; it doesn’t decrease or remain constant.
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• Interval t5 < t < t7: Here, the function x(t) is decreasing at a constant rate (constant
negative slope). Therefore, ẋ(t) must be constant and negative between t5 and t7.

To my eye, the magnitude of the slope between t5 and t7 looks to be about the same as the
magnitude between 0 and t2. Therefore, I have draw ẋ(t) so that the magnitudes in the two
intervals are about the same.

• time t = t11: At this instant, notice that the slope of x(t) changes abruptly. It looks like
there is a kink in the graph. This is why the derivative ẋ(t) changes abruptly at t11.

• Interval t2 < t < t3: This is a region of transition in which the slope of x(t) goes from
positive to zero. But it does so continuously. There is no abrupt change in slope, or “kink”
in x(t), like there was at t11. Since the slope of x(t) changes continuously from t2 through t3,
the derivative ẋ(t) must vary continuously in this interval.

Not enough information is given to us in the problem to know exactly how ẋ(t) varies between
t2 and t3. For simplicity, I have used straight lines.

• Interval: t7 < t < t9: This is another interval of transition in which the slope of x(t)
continuously goes from a negative value to a positive value. I have drawn my derivative as a
straight line in the interval.

The new, potentially tricky, part about this part is that in going from negative to positive
continuously, the derivative ẋ(t) must pass through zero. What happens when the derivative
is zero?

When the derivative ẋ(t) is zero, the slope of x(t) is zero. Notice that the slope of x(t) is zero
for one brief instant, at t = t6. I have draw my plot of ẋ(t) so that it passes through zero at
t6.

Note: The derivative being zero for one brief instant at t6 is very different from the derivative
being zero over a whole time interval t3 < t < t4. Between t3 and t4, the derivative is zero
because x(t) is constant; it’s not changing at all during the interval. At t6, the zero derivative
does not occur because x(t) stops changing. Rather, it passes through zero as the rate of
change goes from negative to positive. We see that as the slope goes from negative to positive,
we encounter a local minimum in x(t). If the slope went from positive to negative, we would
have a local maximum.

B.1.5 Take-Aways

Here is a list of what I feel are the most important points that you should take away from Section B.1.

1. A time derivative is a measure of how fast something is changing. It is a time rate of change.

2. If we plot a function, then the derivative of the function at a time t0 is the slope of that
function at t = t0.

3. When something is increasing with respect to time, its time derivative is positive.

4. When something is decreasing with respect to time, its time derivative is negative.

5. When something is not changing, its time derivative is zero.

6. A time derivative of zero does NOT necessarily mean that the function is not changing. A
function will momentarily have a time derivative of zero when it reaches a local peak (maxi-
mum) or local minimum, for example.
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B.2 Integration

The other fundamental operation you learned in your first calculus course was integration. I summa-
rize what I believe to be the most important parts (from the perspective of Engineering Dynamics)
here.

B.2.1 Integration is the Opposite of Differentiation

Suppose we had an “operator” called +2, which takes any number as an input and produces another

number (the output) by adding two to the input. So, for example, 6
+2−→ 8 or 11

+2−→ 13. Here, 6
and 11 were the inputs; 8 and 13 were the outputs.

For the operator +2, there is another operator -2 (e.g. 8
−2−→ 6) which acts as an inverse. In

other words, if we have two numbers a and b such that

a
+2−→ b, then b

−2−→ a.

Similarly, we can define an operator ×5 which multiplies the input by 5: e.g. 6
×5−→ 30. It’s probably

not a surprise that multiplication also has an inverse. It’s called division by five: ÷5. Therefore,

a
×5−→ b, then b

÷5−→ a.

Differentiation and integration work in a very similar way. We can think of the derivative as an
operator that takes a function x(t) as input and produces another function ẋ(t) as output:

x(t)
derivative−−−−−−→ ẋ(t).

The inverse of the derivative operator is the integration operator:

ẋ(t)
integration−−−−−−→ x(t).

In your first calculus class, you may have called the integral the anti-derivative. It’s because
integration does the opposite thing as differentiation.
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B.2.2 Check Your Understanding (Video)

Back in that first calculus course you probably spent a lot of time learning how to integrate specific
functions (e.g. t2, log(t), cos(2t), et cetera). All that is important. However, I want to make sure
you have more of an intuitive understanding of what integration is.

The exercise I want you to complete below is exactly the opposite of that in Section B.1.4. Now,
I’m giving you the function ẋ(t) and I want you to integrate it to sketch, by hand, a plot of x(t).
You should keep the scale on the time axis the same. I have included some light gray vertical lines
in order to help you align features of your plot. Do not turn the page until you have completed
your plot.
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Figure B.5: Test your understanding of the time integration.
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Here’s an answer2. Examine it very carefully, and read the itemized comments below.
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Figure B.6: An answer.

• Starting point: The problem statement on the previous page does not tell us where x(t)
should begin. For simplicity, I choose x(0) = 0. As we shall discuss in Section B.2.3, the
choice is arbitrary.

• Interval 0 < t < t1: Because ẋ(t) is positive in this interval, x(t) must be increasing. However
the rate at which x(t) increases becomes smaller as ẋ(t) becomes smaller. Graphically, we see
that the slope of x(t) starts off with a relatively steep slope, but the slope gets shallower in
time until t = t1, where the slope is zero.

• Interval t1 < t < t2: In this interval, we continue the parabolic curve that began in the
previous interval. Between t1 and t2, the x(t) begins to decrease, and the rate of decrease
becomes more pronounced up until t = t2.

• Instant t = t1: At this instant, the derivative is zero and x(t) reaches a local maximum.

• Interval t2 < t < t3: In this interval ẋ(t) is negative and constant. Therefore, x(t) decreases
at a constant rate; it is a line with constant negative slope. Notice that the slope of this
straight line matches the slope of the parabola at t = t2, as it must since ẋ(t) is continuous
at t2. There is no abrupt jump in the value of ẋ(t), and hence no sudden change in slope of
x(t).

• Interval t3 < t < t4: At t = t3, there is a sudden jump in ẋ(t). Therefore we do see a sudden
change in the slope of x(t). Now, ẋ(t) is positive and constant. Therefore x(t) is a straight
line with positive and relatively small slope. x(t) increases at a constant (somewhat small)
rate.

2Notice that I said “an” answer rather than “the” answer. I’ll explain the squishy language in Section B.2.3.

48



• Interval t4 < t < t5: In this interval, ẋ(t) drops rather rapidly from something positive to
zero. Therefore, the slope of x(t) rapidly – but continuously – rolls off to zero (flat).

• Interval t > t5: Here, ẋ(t) is zero over an interval, meaning that x(t) does not change over
that interval. Therefore we see a constant value of x(t) over the interval.

In the discussion above, there are a few aspects I have left off. For example, why is x(t3)
positive? Why is x(t5) negative? We will address these issues in Section B.2.4.

B.2.3 Constant of Integration

Suppose we take the answer to the previous question and shift it upward a bit, or shift it downward,
like one of the dark gray x(t) curves in Figure B.7. At any given time t, each of the x(t) curves has
the same slope. Therefore, each curve x(t) is an anti-derivative of the function ẋ(t) in the top half
of the figure. Thus, there are multiple valid answers to the question; each one is an integral to ẋ(t).

t

x
t

x

Figure B.7: There are multiple valid answers.

I bet you already knew this. In your first calculus class, you learned how to integrate a function
like f(t) = t2. When you did, you got ∫

t2 dt =
1

3
t3 + c.

Similarly,∫
sin(5t) dt = −1

5
cos(5t) + c,

∫
1

t
dt = ln(t) + c,

∫
ln(t) dt = t ln(t)− t+ c.
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That last one can can be obtained via integration by parts3. The point I’m trying to get you
to remember is that each one of these (indefinite) integrals has a “+c”, an arbitrary constant of
integration that can be added to it.

The fact that we get a whole family of answers to the “Check Your Understanding” question
in the previous section is because of the constant of integration. The additive constant shifts the
curve up or down as depicted in Figure B.7.

B.2.4 Integration is an Area Calculation

You may recall from your first calculus class that integration can also be interpreted as an area
under a curve. When we think of integration as area, let’s consider it as a definite integral:

x(t) =

∫ τ=t

τ=0
ẋ(τ) dτ. (B.2)

Furthermore, we’ll consider a specific concrete example shown in Figure B.8. In the figure, a function
ẋ(τ) that we wish to integrate is given. The light gray vertical lines mark off six equally spaced
times t1 through t6.
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Figure B.8: Integration as the area under a curve.

So, using expression (B.2), we can write x(t1) as

x(t1) =

∫ t1

0
ẋ(τ) dτ.

Notice from the figure that t1 is very close to zero. Therefore, the integral above represents the area
in a very narrow slice as shown in Figure B.8(a). The area is almost nothing. Therefore, the value
of x(t1) is almost zero as indicated in the bottom half of the sub-figure.

If we were to substitute t = t2 into (B.2), then we would find that x(t2) is the area under the
ẋ(τ) curve between τ = 0 and τ = t2. Since the area between 0 and t2 is larger than the area
between 0 and t1, we know that x(t2) > x(t1), as indicated in the figure.

As we let t increase to t3 and to t4, the integral keeps accumulating more area. Therefore,

x(t2) < x(t3) < x(t4).

3You remember integration by parts, right?
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The function x(t) continues to increase between 0 and t4.
However, notice that the area accumulated between t3 and t4 is not as large as the area accu-

mulated between t2 and t3. For this reason, x(t) does not increase as much between t3 and t4 as it
did between t2 and t3.

In Figure B.9, I continue the illustration begun in Figure B.8. Between t4 and t5, ẋ(τ) is
negative. Therefore, the area circumscribed during this interval makes a negative contribution to
the integral. Therefore, x(t5) is less than x(t4). In particular, since ẋ(τ) is a straight line and all
time intervals have the same width, the positive area between t3 and t4 has the same magnitude as
the negative area between t4 and t5. Thus, the increment in x(t) between t3 and t4 is equal to the
decrement between t4 and t5. As a consequence, x(t3) = x(t5).
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Figure B.9: Continued discussion of integration as the area under a curve.

Similarly, in going from t5 to t6, the accumulated area is more negative, and x(t) decreases more
rapidly. Because of the symmetry discussed in the previous paragraph, we have x(t2) = x(t6).

Of course, x(t) is a continuous function defined at more than just the six instances of times
highlighted in our discussion so far. By connecting the dots as shown in Figure B.9 we get a
parabolic-looking4 curve for x(t).

B.2.5 Our Two Interpretations of the Integral are Consistent

So in the previous several pages we’ve seen integration being interpreted as an anti-derivative. Then
we saw integration interpreted as the area under a curve. Although these may seem like completely
different interpretations, they are entirely consistent.

When ẋ(t) is more positive, our first interpretation as an anti-derivative tells us that that x(t)
should increase more rapidly. Similarly, our area interpretation tells us that when ẋ(t) (integrand)
is more positive, the integral accumulates area at a faster rate. Therefore, x(t) increases at a faster
rate.

Furthermore, note that our function ẋ(τ) in Figures B.9(d) is the same as the first part of ẋ(t)
in Figure B.6. Also notice that our integrals x(t) obtained via the two interpretations are the same.

Using our area interpretation, we can explain a few features of x(t) in Figure B.6 that were
difficult to understand just by thinking of the integral as an anti-derivative.

4Recall that the integral of a linear function is quadratic. Therefore, x(t) is, indeed, parabolic.

51



For example, x(t2) in Figure B.6 is positive because the positive area under the ẋ(t) between 0
and t1 is bigger in magnitude than the negative area “under” ẋ(t) between t1 and t2.

Similarly x(t5) is negative because the negative area between t2 and t3 has larger magnitude
than the positive area after t3.

B.2.6 Take-Aways

Here is a list of what I feel are the most important points about integration that you should take
away from Appendix B.2

1. We discussed two ways of thinking about integration:

(a) An integral is an “anti-derivative,” the opposite of derivative.

(b) An integral can also be interpreted as the area “under” a curve.

2. When the integrand (the function you’re integrating) is positive, the integral is increasing.

3. When the integrand is negative, the integral is decreasing.

4. When the integrand is zero, the integral does not change.

5. For indefinite integrals, there is an arbitrary constant of integration.
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